

Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design

PI:Rich Lehoucq (1414), PM:John Aidun (1435), Stephen Foiles (1814), Mike Parks (1414), Mark Sears (1435), Stewart Silling (1435)

Peridynamics (Silling 2000)

- Motivation: Continuum theory for discontinuous deformation
- Impact: 3D material failure simulations
- Key: nonlocal model of force

Journal of the Mechanics and Physics of Solids 48 (2000) 175–209 JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS

Reformulation of elasticity theory for discontinuities and long-range forces

S.A. Silling*

Computational Physics and Mechanics Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-0820, USA

Received 2 October 1998; received in revised form 2 April 1999

Question: What is the relationship between molecular dynamics and peridynamics?

$$\rho \ddot{u} = \int k(x', x) dx' + b$$

Mesoscopic or an intermediate scale

Molecular, or atomistic regime

$$m_i \ddot{y}_i = f_i^{\text{int}} + f_i^{\text{ext}}$$

Traditional engineering length scale

$$10^{-6} - 10^{-3} \,\mathrm{m}$$

$$\rho \ddot{u} = \text{div}\sigma + b$$

ARERING.

OVAT

Purview of peridynamics is the mesoscopic regime

Courtesy (via the web) Professor Marcus Buehler (MIT)

Peridynamic applications

Cracking in a notched graphite/epoxy composite laminate (joint with Boeing)

Dynamic fracture in a polycrystal (Bobaru and Silling)

Stretching and failure of initially square nanofiber network (Bobaru)

Oscillatory crack path in a thin membrane (Bobaru and Silling)

Simulations performed with EMU Fortran 90 code (Silling)

Statistical mechanical foundations

The Statistical Mechanical Foundations of Peridynamics

I. Mass and Momentum Conservation Laws

SAND 2009-0971J, under revision for PRE

Mark P. Sears* and R. B. Lehoucq[†]

Multiscale Dynamic Materials Modeling,
and Applied Math and Applications,

Sandia National Laboratories, Albuquerque, NM 87185

(Dated: March 5, 2009)

- Peridynamics has a statistical mechanical foundation—it lies at the mesoscopic regime
- Justifies our claim that peridynamics is a rigorous coarse-graining of atomistics, or molecular mechanics

Recipe for generating balance equations

- Express densities (mass, momentum, force, energy)
 as phase space (statistical) expectation
- Using Liouville's equation, compute the rate of change of this expectation
- Much tedious manipulation results in the balances of mass, momentum (peridynamic) and energy (peridynamic)
- Force and heat flux are nonlocal quantities

Question: What about constitutive relationships? What do we replace stress-strain relationships with?

Deformation

$$x = \Psi_{t}(X), \quad x' = \Psi_{t}(X')$$

$$\Phi(x, x') := x' - x = \Psi_{t}(X') - \Psi_{t}(X)$$

$$\approx \nabla \Psi_{t}(X) \left(X' - X\right)$$
Deformation gradient

Constitutive relation

Question: What about constitutive relationships? (What do we replace stress-strain relationships with?)

 $div\sigma(x) = div\sigma(grad\Psi(x))$

Answer: Map Φ(x,x') to force density (via an integral operator)

$$\int k(x',x)dx' = \int k(\Psi(x,x'))dx'$$

Nonlocal because points x'≠x are involved

The goal of the coarse-graining of atomistics into peridynamics is to provide a basis for approximating constitutive relationships at the mesoscopic scale

LAMMPS and molecular dynamics

Computer Physics Communications 179 (2008) 777-783

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Implementing peridynamics within a molecular dynamics code

Michael L. Parks a,*,1, Richard B. Lehoucq a,1, Steven J. Plimpton b,1, Stewart A. Silling c,1

- Implemented within LAMMPS (SNL mpp molecular dynamic code)
- Provide a software platform for experimentation
- Enable molecular dynamic users access to a continuum mechanics capability for mesoscopic computing
- Provide continuum mechanicians a molecular mechanics capability

3D dynamic brittle fracture in glass simulations

Physical experiment: S F. Bowden, J. Brunton, J. Field, and A. Heyes, *Controlled fracture of brittle solids and interrup tion of electrical current*, Nature, 216, 42, pp.38-42, 1967

- Peridynamics is given a statistical mechanical foundation
- The theoretical basis for multiscale materials modeling has been established

